
113th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Use of CA Plex Model API

Lightning Talk

Sergio Mendes

Lusodata



213th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Customer Infrastructure

Client / Server:

- IBM i (AS400) Servers

- Windows PC Clients



313th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Software Updates Distribution (DevOps)

Development:
- Portugal

Tests/QA/Production Environments:
– Portugal

– Greece

– Egypt

– Saudi Arabia

– Morocco

– Spain



413th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Object Collection and Distribution

Server Objects:

- Collected and distributed manually

- Manually updated by SysAdmin

Client Objects:

- DLLs / PNLs / EXEs

- How to collect the correct objects in a controlled way ?

- Deployed objects would have to be fetched by a “check for updates” mechanism



513th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Know what objects to collect
Plex Lists:

– Are the main repository for logical object collection at development time

– Functions in the list are compiled, analyzed and their DLLs/PNLs stored 
inside “Update Packages”.

Solution:

- Make use of “CA Plex Model API” to process those lists

- Developed a Plex App, called: “LogGest”



613th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Software Updates Distribution
Portugal

(development)

Plex
Build

Folder

Loggest

Update 
Package
Folder

Runtime

PC1 PC2 PCx

Egypt

LAN

Runtime

PC1 PC2 PCx

Greece



713th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

The Model API (using C++)

Plex Model API: COM-based API with over 50 methods
- Allows external applications to interrogate and even modify Local Models.

- Can be used to extract “Change Management” data

- Documented in Plex Help

- Used version 1.0 back in 2007

Current Version is 3.0, has better exception handling.



813th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Plex Model API Documentation



913th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Plex Model API – the source codes

&(2:) -> Concurrency Level (usually, COINIT_MULTITHREADED)

&(3:) -> Return Code (S_OK is good)

Step 1: initialize the COM Framework.



1013th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Step 2: get a pointer for the List object, specified by its name.



1113th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Enumerate List Objects (fncs)
Step 3: get “Verb” pointer and “VerbID” (from simple Verb: “LstContainsFnc”)



1213th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Enumerate List Objects (fncs)
Step 4: use “VerbID” from step 3 and get enumerator pointer:



1313th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Enumerate List Objects (fncs)
Step 5: get the number of objects in the enumerator (using the enumerator pointer returned before):



1413th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Process “LstContainsFNC” element:
Step 6: get first object’s pointer (should be a triple whose target is a Function):



1513th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Process “LstContainsFNC” element:
Step 7: inside a While, obtain the triple’s target, which is a pointer to a Function object:



1613th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Process Target Object (FNC):
Step 8: get target object’s (Function’s) name:

W2A macro: is used to convert widechar (COM) into ansi (Windows 1252)



1713th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Process Target Object (FNC):
Step 9: get object’s (Function’s) type:



1813th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Process Target Object (FNC):
Step 10: get Function’s language (1st, get VerbID: “FncLanguageSys” *):

* actually, function’s language is another triple, needs a VerbID to start another enumeration. Obviously, it should occur only once.



1913th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Process Target Object (FNC):
Step 11: get Function’s language (start another enumeration using VerbID obtained in previous step):

NOTE: the enumeration pointer must be stored in another field, must not spoil the List enumerator pointer, which was 
obtained in the step number 4.



2013th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Process Target Object (FNC):
Step 12: get enumerator’s first (and only) triple “FNC Language SYS”:



2113th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Process Target Object (FNC):
Step 13: get triple’s target object (language):



2213th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Process Target Object (FNC):
Step 14: get triple’s target object name (fnc’s language):



2313th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Process Target Object (FNC):
Step 15: get rid of the FncLanguageSys enumerator (free the ptr):



2413th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Process Target Object (FNC):
Step 16: get next (LstContainsFnc) triple, then repeat all previous steps until there are no more triples:

Head back to step 7 (slide 15) and do it all again. Step 7 API will be fed with this triple pointer.



2513th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Clean up:
Step 17: deallocate triples enumerator:



2613th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Clean up:

Last Step: Unitialize (free) COM



2713th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

LogGest DEMO



2813th CA 2E/CA PLEX WORLDWIDE DEVELOPER CONFERENCE

Contact

+1 207-691-2908

+351 21 417 35 67 (Portugal)

sergio.mendes@lusodata.pt

www.lusodata.pt


