Enhanced functionality within the CA 2E 400 Toolkit compile preprocessor

The compile preprocessor that is shipped with the CA 2E 400 Toolkit has been rewritten to allow greater functionality and more flexibility when compiling objects.

The following additional functionality has been included:
Preprocessor directive limit increased to 50
The total number of compile preprocessor directives allowed in a single source member has been increased to 50. This limit includes pre-compilation and post-compilation commands (Y* directives), compilation overrides (Z* directives), source member text overrides (T* directives), exit program calls (P* directives – see below) and external source member definitions (X* directives – see below).
Wider range of substitution variables

The following substitution variables are now valid in compile preprocessor directives:

&A - Source member attribute, e.g. RPGLE

&B - *OBJ (hard coded for backwards compatibility)

&C - Compilation command, e.g. CRTBNDRPG

&D - Source change date in MDY format, e.g. 032105

&E - Current source member (may be external X* member)

&F - Source file name, e.g. QRPGLESRC

&G - Job name, e.g. QPADEV0003

&H - Job number, e.g. 123456

&I - Job user, e.g. HEWRO01

&J - Qualified job description, e.g. MYMDLLIB/QBATCH
&L - Source library, e.g. MYGENLIB

&M - Source member, e.g. UUAJEFR

&N - Object name, e.g. UUAJEFR
&O - Object name, e.g. UUAJEFR

&Q - Qualified job, e.g. 123456/HEWRO01/QPADEV0003

&S - Object type without '*', e.g. PGM

&T - Object type, e.g. *PGM

&X - Source member text

&Y - Compilation date in MDY format, e.g. 032105

&Z - Compilation timestamp e.g. 05-03-21-12:13:45:00000

Separation of pre- and post-compilation commands
Pre-compilation commands and post-compilation commands can be separated through the use of one or more Z* (compilation override) directives.
Any Y* or P* directives which appear before the first Z* directive will be processed before the source member is compiled. Any Y* or P* directives which appear after the first Z* directive will be processed after the source member is compiled. If multiple Z* directives appear in the source member separated by other compile preprocessor directives, the first Z* directive will determine the separation of pre-compilation and post-compilation commands (but all subsequent Z* directives will be processed as part of the compilation command).

If both pre-compilation commands and post-compilation commands are required but no compilation overrides are required, a blank Z* directive (a directive containing only a Z* or a /*Z:) or a Z* directive containing only the compilation command itself can be used to separate pre-compilation commands and post-compilation commands, e.g.:
Y* SNDMSG MSG('About to compile &N...') TOUSR(*REQUESTER)

Z*

Y* SNDMSG MSG('Compilation completed!') TOUSR(*REQUESTER)
or

Y* SNDMSG MSG('About to compile &N ...') TOUSR(*REQUESTER)

Z* CRTBNDRPG

Y* SNDMSG MSG('Compilation completed!') TOUSR(*REQUESTER)

In this case, the compile preprocessor will recognize that the command in the second Y* directive should be executed after the compilation command has been executed.
Both pre-compilation and post-compilation commands can contain the full range of substitution variables.
Exit program call functionality
Users can define their own 'exit programs', to be automatically called before or after the source member is compiled. Exit programs are invoked through a new preprocessor directive identifier – the P directive.

In a fixed-format source member (such as RPG, COBOL or DSPF) an exit program preprocessor directive will have the following format:

P* [library-name/]program-name

In a free-format source member (such as CL), an exit program preprocessor directive will have the following format:

/*P: [library-name/]program-name */

If the library name is not specified, *LIBL is assumed.

All exit programs have the same parameter format, as follows:

1. Compile command
2. Source member
3. Source file
4. Source library
For instance, if the following compile preprocessor directive is found in an RPGLE source member called MYPGM in file QRPGLESRC in library MYLIB which is being compiled with the CRTBNDRPG command:

P* QGPL/EXITPGM

then the following command will be executed as part of the compilation process:

CALL PGM(QGPL/EXITPGM) PARM('CRTBNDRPG ' 'MYPGM ' 'QRPGLESRC ' 'MYLIB ')

Note that if an exit program is called before the source member is compiled, it can make changes to the source before the source member is compiled.
It is the responsibility of the user to create and test exit programs thoroughly before deploying them in a production environment.

Global control data area YBRTPXA
A new data area called YBRTPXA is shipped in the product. It is a 42 byte character data area with the following format:

Bytes 1 – 10:

Pre-compilation exit program name (default: '*NONE')
Bytes 11 – 20:
Pre-compilation exit program library (default: blank)

Bytes 21 – 30:
Post-compilation exit program name (default: '*NONE')
Bytes 31 – 40:
Post-compilation exit program library (default: blank)
Byte 41:

Cancel compilation if error ('1'/'0') (default: '0')
Byte 42:

Currently unused (default: blank)

If a global pre- or post-compilation exit program is specified, it must have the parameter format as defined in the "Exit program call functionality" section above) which will automatically be called during the compilation process. If the exit program library is not specified, *LIBL will be used.
The global pre-compilation exit program (if specified) will be called before any exit programs defined using a P* directive and the global post-compilation exit program (if specified) will be called after any exit programs defined using a P* directive.
If byte 41 in the YBRTPXA data area is set to '0' (the default), then if the compile preprocessor encounters an error, the source member will be compiled using the system defaults, with all compile preprocessor directives ignored - this is the default that has been used in previous versions of the compile preprocessor. However, if byte 41 is set to a value of '1', an error in the compile preprocessor will cause the compilation to end immediately. This setting allows the user to immediately identify any problems with, for instance, invalid compile preprocessor directives.

Using the YBRTPXA data area to specify global pre- and post-compilation exit programs in this way allows users to perform automatic source manipulation (such as the addition of color to directives in the source) prior to compilation, without needing to specify a P* directive in every source member.
Use of external source members to hold preprocessor directives
Users can define their own external compile preprocessor source members, which can be used to hold global compile overrides or other compile preprocessor directives. External preprocessor source members are identified with a new preprocessor directive identifier – the X directive.

In a fixed-format source member (such as RPG, COBOL or DSPF) an external source member directive will have the following format:

X* [[library-name/]file-name,]member-name

In a free-format source member (such as CL), an exit program preprocessor directive will have the following format:

/*X: [[library-name/]file-name,]member-name */

If the library name is not specified, *LIBL is assumed. If a file name is not specified, the current source member file name is assumed.

For instance, a user could create a source member called RPGDFTOVR with the following directives in it:

Z* TGTRLS(V5R1M0)

Z* DBGVIEW(*LIST)

Z* OPTION(*NODEBUGIO)

and place it in file QRPGLESRC in library QGPL. Then, in all RPGLE source members, the user could simply have the following directive:
X* QGPL/QRPGLESRC,RPGDFTOVR

and when the program is compiled, the compile preprocessor will retrieve the Z* compilation overrides from the RPGDFTOVR source member and include them in the compilation command.
Any compile overrides specified in an external source member may themselves be overridden by compile overrides specified further down in the source member itself (or in a different external source member which is defined further down in the source member being compiled). So for instance, if the following preprocessor directive directives are coded into an RPGLE source member:

X* QGPL/QRPGLESRC,RPGDFTOVR

Z* TGTRLS(V5R2M0)

then the source member will be compiled using TGTRLS(V5R2M0), since the Z* directive is after the X* directive.

An external source member can itself contain X* directives pointing to 'nested' external source members (there is a limit of 100 nested source members).

External source members can also contain Y* directives, to perform pre-compilation or post-compilation tasks. For instance, if a user has a number of modules MOD1, MOD2 and MOD3, which are bound into a single service program SRVPGM1, they could have single source member called e.g. SRVPGM1 which contains the CRTSRVPGM command to create the service program, e.g.:

Y* CRTSRVPGM SRVPGM(&L/SRVPGM1) +

Y* MODULE(MOD1 MOD2 MOD3) +

Y* TEXT('Service program 1')

In each of the modules MOD1, MOD2 and MOD3, the user can include the following directive anywhere after the first Z* directive:
X* QGPL/QRPGLESRC,RPGDFTOVR

X* QGPL/QRPGLESRC,SRVPGM1

and whenever any of MOD1, MOD2 or MOD3 are recompiled, the module will be compiled using the defaults in the RPGDFTOVR external member and then the SRVPGM1 service program will also be automatically recreated to include the changed module.
Enhancement to YEXCOVR command

As part of the enhancement to the compile preprocessor, the YEXCOVR command has been changed. The YEXCOVR command allows the user to interactively execute a command using the compile preprocessor. Prior to this change, the YEXCOVR command had two parameters – CMD and RQSDTA. The user could either pass a valid OS/400 command in the CMD parameter or they could pass a request string in the RQSDTA parameter. The change to YEXCOVR covers the addition of two new parameters – SRCFILE and SRCMBR. If the user has an external source member which contains a number of compile preprocessor directives (see above), they can specify the source member with these two parameters and it will be processed by YEXCOVR. Note that to do this, they must also specify the special value of '*SRCMBR" in the RQSDTA parameter, e.g.:

YEXCOVR RQSDTA(*SRCMBR) SRCFILE(QGPL/QRPGLESRC) SRCMBR(SRVPGM1)

This would case the compile preprocessor to process all the directives in the SRVPGM1 member.

Integration with CA 2E using EXCUSRSRC

Prior to this rewrite of the compile preprocessor, Y* directives specified in EXCUSRSRC were automatically inserted into the generated source of functions which call the EXCUSRSRC function prior to any Z* directives (i.e. as pre-compilation commands). In addition, the RPGIV generator allowed users to specify X* directives in EXCUSRSRC, which were automatically inserted into the generated source of functions which call the EXCUSRSRC function as Y* directives after any Z* directives (i.e. as post-compilation commands).

The following should be noted when including compile preprocessor directives in EXCUSRSRC within CA 2E

1. All generators have now been standardized for backwards-compatibility so that any standalone X* directives in EXCUSRSRC will be converted into Y* directives that are inserted into the generated source of functions which call the EXCUSRSRC function after any Z* directives (i.e. as post-compilation commands). Standalone Y* directives continue to be inserted into the source before any Z* directives (i.e. as pre-compilation commands). This only applies to existing stand-alone X* compile preprocessor directives.
2. To use the new compile preprocessor directive types (X* and P*), they must be in a block surrounded by lines which begin with '/*', e.g.:

/*

compile preprocessor directives

/*

The /* lines can contain comments, e.g. '/* Start of preprocessor block' but will not be generated into the source. Only a single /* line should start and end the preprocessor directive block.

Directives within a preprocessor directive block are copied into the final source member prior to any Z* directives, until a Z* directive is found in the preprocessor directive block. If a non-blank Z* directive is found, it is inserted into the source with the default Z* directives generated into all 2E functions. If a blank Z* directive is found, it will not be generated into the source, but it will be used to delimit pre- and post-compilation commands (see the section on "Separation of pre- and post-compilation commands" for more details). All subsequent preprocessor directives are inserted into the final source member after any Z* directives.
3. Any P* (exit program call) directives will be ignored if they are found outside a preprocessor block. P* directives are only valid within a preprocessor directive block.
For instance, if an EXCUSRSRC function contains the following code:

/* Start of preprocessor directive block
Y* SNDMSG MSG('About to compile...') TOUSR(*REQUESTER)

X* QRPGSRC,DOCSRC1

P* QGPL/PREPROCRPG

Z* USRPRF(*OWNER)
P* QGPL/PSTPROCRPG

X* QRPGSRC,DOCSRC2

Y* SNDMSG MSG('Compilation completed!') TOUSR(*REQUESTER)

/* End of preprocessor directive block
then the final code that would be seen in the source of a function that calls this EXCUSRSRC would be as follows:

...

Y* SNDMSG MSG('About to compile...') TOUSR(*REQUESTER)

X* QRPGLESRC,DOCSRC1

P* QGPL/PREPROCRPG

Z* <default-2E-compile-overrides>

Z* USRPRF(*OWNER)

P* QGPL/PSTPROCRPG

X* QRPGLESRC,DOCSRC2

Y* SNDMSG MSG('Compilation completed!') TOUSR(*REQUESTER)

...

The first three directives of the EXCUSRSRC (not including the starting '/*' line) have been inserted into the source. Next come the default Z* directives that are generated for 2E functions, followed by the Z* directive from the preprocessor directive block. Finally, the last three directives in the preprocessor block (not including the ending '/*' line) are inserted into the source.
