
Migration From WINC
Exercise Goal
Convert WINC-ODBC application to .NET or Java

About Exercise Environment

Local Model
C:\Conf2020\Exercise\Local\Conf2020.mdl
Configured for WINC-ODBC

Single Entity Employee
PK: Employee ID (GUID)

Email Validation
The Employee Entity has a Email Address field and using Source code API for Email format validation
The validation is done by checking char by char

 {
 CString s = &(1:);
 &(2:) = "Y";

 if (! s.IsEmpty())
 {
 int i,offset1,offset2,n, hitAtMark = 0;
 bool charflag=true,offsetflag=false;

 n=strlen(s);

 for(i=0;i<n;i++)
 {
 char c = s[i];
 if (!(c >='A' && c <= 'Z' || c >= 'a' && c <= 'z'|| c >= '0' && c <='9' ||c =='.'||c =='-' || c =='+'|| c =='@'|| c =='_'))
 {
 charflag=false;
 break;
 }
 }
 offset1 = -1;

 offset2 = -1;

 for(i=0;i<n;i++)
 {
 if(s[i]=='@')
 {
 hitAtMark++;
 offset1=i;
 }
 if(s[i]=='.')
 {
 offset2=i;
 }
 }

 // '@' mark is not first char and there is a '.' after '@'
 if(offset1 > 0 && offset2 >= 0 && offset1 < offset2)
 {
 offsetflag=true;
 }
 // '@' apear once, all char is valid
 if(hitAtMark == 1 && offsetflag==true && charflag==true)
 {
 // Valid Email
 }
 else
 {
 &(2:) = "N";
 }
 }
 else
 {
 &(2:) = "N";
 }
}

GUID generation
The Employee Entity using GUID as a key and using Source code API to generate New GUID

{
 GUID gidReference;
 CoCreateGuid(&gidReference);

 OLECHAR* guidString;
 StringFromCLSID(gidReference, &guidString);
 &(1:)=guidString;
}

Package Structure

Please confirm Packages, they are predefined for you
com.conf2020.data
com.conf2020.misc
com.conf2020.ui

Exercise Path
Please Pick .NET or Java (or both)

Both exercise 1 (.NET) and 2 (Java) goal is to convert WinC application to new target platform

Java exercise has extra one to convert Java Client to WebClient (Exercise 3)

Exercise 1 Convert to .NET

1. Change Model Configuration for .NET
First to get the power of CA Plex Model configuration, please change Local model Configuration for .NET

2. Email Validation Conversion
Function: Employee.Edit has an employee e-mail field on the panel. It is validated by “Function:
ValidateEmail” using “Fld Validated by Fnc” which contains C++ source code do the actual validation in
C++. You need to convert it to C#

“Function: ValidateEmail” using C++ Source code to validate email
Please add Meta language Condition check, add new C# Source code and write C# code for email

validation

• Add new Source code for C# ‘ValidateEmail_CS’

• Define the same parameter with ‘ValidateEmail’

• Write C# code to validate email

Google search ‘C# email validation’ one of the answers is end of document

• Add Meta Function call statement in the Initialization

• Add Meta Language Condition in Validate Sub routine
Add +If statement and API Call Statement

For Copy paste to AD

Note:
This is an example of conversion doesn’t need to be complicated as C++ and it is within Framework
already. The same applies many Data and Time calculations.

3. GUID generation (Source code: GetNewGuid)
Employee Entity has Employee id as key and using GUID instead of surrogate to keep the record unique.
The Function: Employee.Edit invoking GetNewGUID source code to generate Guid
You need to convert it to C#

• Function: Employee.Edit is calling the source code

Two options

1. The same approach with previous Email Validation exercise. Call Source code from

Employee.Edit Function by adding Meta block

2. Promote ‘GetNewGuid as Function’ by wrapping Source code API and make it reusable

Call UIBASIC/Meta.Options

+If Field: FIELDS/+WinC
+If Field: FIELDS/+C#

Opt. 1: Keep Source code

• Add one new Source code the ‘Source code: GetNewGuid_CS’ that has the same

Parameter with ‘Source code: GetNewGuid’

• Write C# source code to generate New Guid
The answer is at the end of this document

• Please add ‘Meta Function call’ like previous exercise and add +IF condition to invoke

Source Codes

Opt. 2: Promote to Function

• Add one new Source code the ‘Source code: GetNewGuid_CS’ that has the same

Parameter with ‘Source code: GetNewGuid’

• Write C# source code to generate New Guid
The answer is at the end of this document

Add New Function GetNewGuid as bellow

Please add the new Function: GetNewGuid to Package com.conf2020.misc

For Copy and Paste

Add Action Diagram codes

Change Employee.Edit Action Diagram to call the new Function instead of Source code API Call

Note:

Option2 feels requiring more step. However, if the GetNewGUID is used many functions, Option 2

requires less step to migrate than Option 1.

FunctionShell
ClientInternal
GetNewGuid
GetNewGuid_CS

Exercise 2 Convert to Java

1. Change Model Configuration for Java
First to get the power of CA Plex Model configuration, please change Local model Configuration for Java

Model Configuration

2. Email Validation Conversion (Function: ValidateEmail)
Function: Employee.Edit has an employee e-mail field on the panel. It is validated by “Function:
ValidateEmail” which contains C++ source code do the actual validation
You need to convert it to Java

“Function: ValidateEmail” using C++ Source code to validate email
Please add Meta language Condition check, add new Java Source code and write Java code for email

validation

• Add new Source code for Java ‘ValidateEmail_Java’

• Define the same parameter with ‘ValidateEmail’

• Write Java code to validate email

Google search ‘C# email validation’ one of the answers is end of document.

• Add Meta Function call statement in the Initialization

Call UIBASIC/Meta.Options

• Add Meta Language Condition in Validate Sub routine
Add +If statement and API Call Statement

For Copy paste to AD

3. GUID generation (Source code: GetNewGuid)
Employee Entity has Employee id as key and using GUID instead of surrogate to keep the record
unique. The Function: Employee.Edit invoking GetNewGUID source code to generate Guid
You need to convert it to Java

• Function: Employee.Edit is calling the source code

Two options

1. The same approach with previous Email Validation exercise. Call Source code from

Employee.Edit Function by adding Meta block

2. Promote ‘GetNewGuid as Function’ by wrapping Source code API and make it reusable

Opt. 1: Keep Source code

• Add one new Source code the ‘Source code: GetNewGuid_Java’ that has the same

Parameter with ‘Source code: GetNewGuid’

• Write Java source code to generate New Guid
The answer is at the end of this document

+If Field: FIELDS/+WinC
+If Field: FIELDS/+Java

• Please add ‘Meta Function call’ like previous exercise and add +IF condition to invoke

Source Codes

Opt. 2: Promote to Function

• Add one new Source code the ‘Source code: GetNewGuid_CS’ that has the same

Parameter with ‘Source code: GetNewGuid’

• Write C# source code to generate New Guid
The answer is at the end of this document

Add New Function GetNewGuid as bellow

Please add the new Function: GetNewGuid to Package com.conf2020.misc

For Copy and Paste

FunctionShell
ClientInternal
GetNewGuid
GetNewGuid_Java

Add Action Diagram codes

Change Employee.Edit Action Diagram to call the new Function instead of Source code API Call

Note:

Option2 feels requiring more step. However, if the GetNewGUID is used many functions, Option 2

requires less step to migrate than Option 1.

Exercise 3 Convert Java to WebClient
CM WebClient provides the ability to run your Plex functions in a web browser. The web application can

behave and perform like a desktop application, plus it can be expanded to take advantage of additional

web controls. A great advantage of WebClient is that the web application only needs to be deployed to

a web server and it is instantly available for users to access from anywhere in the world.

Before a Plex function can be run with WebClient, it needs to satisfy 3 criteria:

1. The function needs to be able to be generated and built in Java.

2. The function needs to inherit from a function with the name of one of the WebClient root

templates, e.g. WebShell.

3. The function needs to include a special source code that the WebClient template generator uses

to identify the inheritance path.

1. Prepare the function for WebClient
We have already prepared the application to run on the Java platform, so we have the first criteria

satisfied. Let’s work on the 2nd & 3rd criteria.

Add the following triple:

Employee.Edit FNC is a FNC ~WebShell

~WebShell is a function in the WebClient group model which has an implementation name of

“WebShell”, which matches one of the root templates for WebClient. We’ll discuss templates further

down.

Open up the action diagram for your Employee.Edit function, and open the Post Point Description

collection point. Here you can see the source code objects inherited from ~WebShell that informs

WebClient of the function’s inheritance path. Again, we’ll discuss this later.

Your function has now been prepared to work with WebClient. There are a few more steps needed to

deploy the function to the web.

2. Configure your WebClient application in Eclipse.
We use the Eclipse IDE to build, publish and debug WebClient applications.

Start Eclipse by clicking on the desktop icon.

Make sure the Workspace is set to C:\Conf2020\Workspace, and click on “Launch”.

Once the workspace has loaded, you may see a WebClient License dialog. Click the “Use Trial” button.

On the left is the Project explorer. There are 3 main projects

• ReplatformJava – The Java project where the Plex-generated Java is published to.

• replatformweb – The web project that contains everything to be published to the web server.

• WebClient – The WebClient product, containing templates, the template generator, and runtime

files required to run the Plex application.

To run our function in the browser, we first need to tell WebClient which function it needs to run first.

We can do this by configuring the WebClient property file.

Expand the replatformweb project, then expand Java Resources and src. You will see the

WebClient.properties file. Double-click on this file to open it up in a text editor.

The WebClient.properties file has all the settings needed to run the application. The property

webclient.entry is required to tell WebClient the entry point for your application. Press Ctrl+F to bring

up the Find dialog, and enter “webclient.entry=” in the search field and press “Find”.

The property is there but it has been commented out (the # at the start of the line is a comment).

Remove the # and set the value to “com.conf2020.ui.TRbtF”. With Java functions, we need to include

the package name as well as the function’s implementation name.

Press Ctrl+S to save the properties file.

3. Generate and Build the function
Switch back to Plex, drag the Employee.Edit function to the Gen & Build window. Generate the function

– there is no need to build here as we will build the function in Eclipse.

Go back to Eclipse. Select the ReplatformJava project, right-click and select ‘Refresh’. This will let

Eclipse find the latest files you generated and apply the build process. Eclipse has been configured

already to use the WebClient template builder.

You should see the WebClient template builder running in the Console tab near the bottom of the

screen.

Your function is now ready to publish.

4. Publish the Web Application
There is “Servers” tab near the bottom of the screen with an entry for Tomcat. This is the server we will

use to publish the web application to.

Right-click on the Tomcat server and select “Start”. After a few seconds, the status of the server should

change to [Started, Synchronized].

Your web application is ready to run.

Go to your desktop and click on the Google Chrome icon.

In the address bar of the browser, enter http://localhost:8080/replatformweb/WebClientServlet

Everything looks good, but let’s test the application.

http://localhost:8080/replatformweb/WebClientServlet

Change the email address to “test” and press Apply. We are expecting an error message as the email

address is invalid, but nothing is displayed.

The reason for this is that we need to specify a page template for to display messages. Let’s take a look

at templates. In Eclipse, expand the WebClient project, then expand the SysTemplate folder.

In general, there are 3 types of templates:

• Root templates – These are identified as having a -root.wcli suffix, and there are two in the

SysTemplates folder, DetailPopup-root.wcli and WebShell-root.wcli. Root templates form the

base for the other templates to build on, similar to FunctionShell in Plex. A function needs to

inherit from at least one of these Root templates, or more exactly, a function needs to inherit

from a function with an implementation name that matches one of these root templates, i.e.

“WebShell”, or “DetailPopup”. WebShell is used for entry functions, or functions that can take

up the whole page in a browser, while DetailPopup will display the function in a Dialog box in

the foreground of the calling function. A DetailPopup always needs to be called from another

function, so it can’t be used as an entry function.

• Page templates – Contain HTML and JavaScript that can be added on top of a Root template.

Page templates are identified as having a -page.wcli suffix. A function can inherit from many

Page templates. Again, WebClient uses the implementation name of functions in the

inheritance path to find matching page templates.

• Control Templates – These templates have a .ctrl suffix. A control template provides the

functionality for individual controls on your panel. For example, the WebGrid.ctrl template

provides the ability to display and edit data, select rows, re-order columns etc. Control

templates can be overridden, so a grid on a panel can be displayed as a Pie Chart, or points on a

map.

Coming back to the messages, WebClient provides different page templates for how you want your

application messages to be handled. We will use the WebLogMessages-page.wcli template, this

template treats Dialog and Log messages the same, showing multiple messages at a time in a pop-up

dialog.

Applying this page template is easy, just inherit from a function which has the implementation name

“WebLogMessages”.

5. Provide Messaging
The WebLogMessages function doesn’t exist in our model, so we’ll create it here.

Add the following triples:

WebLogMessages FNC impl name NME WebLogMessages

Employee.Edit FNC is a FNC WebLogMessages

Check your inheritance path, make sure that the WebLogMessages is below ~WebShell. WebClient will

ignore any page templates above the root template.

It’s important to note that this inheritance does not affect the behavior of the native Java application.

You will still be able to run this function as a Java Swing application.

6. Try out your changes
In Plex, generate your function Employee.Edit function.

Switch to Eclipse, right-click on the ReplatformJava project and select Refresh (or press F5). Eclipse will

build your latest generated function and you will see the progress of the WebClient template generator

in the Console tab.

Switch to the server tab, right-click on the Tomcat server and select Start, or Restart. Once the status

has changed to [Started, Synchronized], open Chrome and visit

http://localhost:8080/replatformweb/WebClientServlet

Now if you change the email address to ‘test’ and press Apply you will see the error message.

Congratulations, you have successfully created a WebClient application.

http://localhost:8080/replatformweb/WebClientServlet

Source code Sample Answers

C# code for email validation
You can code like C++ to read char by char. But, .NET framework provides MailAddress class and it gives

exception if you give a wrong email.

C# code for GUID generation
Simply use System.Guid class

using System.Net.Mail;
{
 try
 {
 MailAddress m = new MailAddress(&(1:).Value);

 &(2:).fromString("Y");
 }
 catch (FormatException)
 {
 &(2:).fromString("N");
 }
}

{
 Guid g = Guid.NewGuid();
 &(1:).fromString(g.ToString());
}

Java code for email validation
Using REGEX (Regular Expression)

top-15-commonly-used-regex

Java code for GUID generation
Simply use java.util.UUID class

{
 String regex = "^[\\w-_\\.+]*[\\w-_\\.]\\@([\\w]+\\.)+[\\w]+[\\w]$";
 if(&(1:).getValue().matches(regex))
 {
 &(2:).fromString("Y");
 }
 else
 {
 &(2:).fromString("N");
 }

}

{
 &(1:).fromString(java.util.UUID.randomUUID().toString());
}

https://digitalfortress.tech/tricks/top-15-commonly-used-regex/

