API Interaction with Plex

In the last conference we introduced a company VHS By Mail, who as the name suggests,
distribute movies on VHS tapes to their customers. They are long time Plex users, and with the
help of CM WebClient they were able to expand their operation to the web.

Business has been booming over the past 18 months and they are looking to expand their
operations to allow customers to request movies and TV Shows that are not currently in their
catalog.

It wasn’t practical for the company to maintain a database of every movie ever made, but they
learned about the Open Movie Database (OMDb API) and decided that accessing their database
via a RESTful API was the obvious way to go.

In this workshop we’ll follow the steps that VHS By Mail took to implement their vision.

Exercise 1: [Optional] Register for API Key

Introduction

The APl we will be using for these exercises is the Open Move Database (OMDb API) which provides
details about Movies and TV Shows. The APl is free to use but requires an APl Key parameter to be
passed with the requests. The service is limited to 1,000 requests per day for a particular key. A couple
of keys are available to use between all participants, so it’s possible this limit may be reached. This
exercise walks you through the steps to receive your own API key to use.

Create API Key
Visit http://www.omdbapi.com/apikey.aspx to access the APl Key page.

Select the “FREE! (1,000 daily limit)” option and enter your details. Set the ‘Use’ to something like
‘Learning about RESTful APIs’.

AP| Key

Generate APl Ke
Account Type Patreon
® FREE! (1,000 daily limit)
Emall]
Name |] L] L]
Use - Tful A
%
A short description of the application or website that will use this API

A verification link will be sent to your email.
Here is yaur key: NI
Please append it to all of your APl requests,
onvpb A NG

Click the following URL to activate your ke NN
[]

If you did not make this request, please disregard this email.

Click on the activation link in the email to activate the key. You should see the following message in the
browser: Your key is now activated!

Now you have your APl Key, we can use it in the following exercises.

Exercise 2: Use Postman to explore the Open Movie Database API

Introduction

A useful tool for exploring APIs is Postman (https://www.postman.com/product/rest-client/). Postman is
simple to use and lets you make API requests, view the output responses and has many other features.
WEe’'ll explore some of the APIs we will use for the exercises.

Using Postman
Start Postman by clicking on the Postman icon on the

Postman
& Postman - (m} X
File Edit View Help
88 My workspace v
Q No Environment v D =
6 J i Requi x
History Collections APIs Untitled Request
= i m Save i
o API Exploration
requests Params Heagers Pr e tSc Tests Settings
o Ai -S m"?-,'.‘ & Tel Query Params
KEY VALUE DESCRIPTION
nd Replace E Console ©=" Bootcamp el N &

In the main area are the Request tabs where you can try out the Open Movie DB or other APIs. The
documentation for the API (http://www.omdbapi.com/) shows that you need to make requests to the
http://www.omdbapi.com/ and pass in parameters to limit the search results. The ‘s’ parameter is
required to provide a title to search for:

By Search

Parameter Required Valid options Default Value Description

s ﬂ <empty> Movie title to search for.

type Ne movieg, series, episode <empty> Type of result to return.

y N <empty> Year of release.

r N json, xm json The data type to return.

page No 1-100 1 Page number to return.

callback No <empty> JSONP callback name.

v No 1 AP| version (reserved for future use).

We'll start by performing a search for movies and shows with ‘tomatoes’ in the title, so we can format

our request URL as

http://www.omdbapi.com?s=tomatoes

In Postman, make sure the request verb is set to ‘GET’ and enter the URL into the address area and

press ‘Send’.

GET v

http:/{www.omdbapi.com?s=tomatoes

Below the request area is the Response and we see that the request failed. Firstly, the response code is
returned as ‘401 Unauthorized’, and secondly the response returns a JSON object with two values:

Response: ‘False’, Error: ‘No API key provided’.

BOdy v =) 401 Unauthorized ,if.—»z

Pretty Raw Preview Visualize JPON v =)

~N

™
- 2

]
"Error”: "No API key ided."

prov

This is a reminder that requests are not guaranteed to be completed, so we should always validate the
response code and response to ensure the request was successful. In this case, it’s obvious that we
didn’t include the API Key with the request, so the service refused to process. Let’s try again with an API
Key parameter.

If you completed the first exercise, use the API key that you registered, otherwise use the key
‘67ecd31b’ for the ‘apikey’ parameter. Each additional parameter is prefixed with a ‘&’. Note that the
order of parameters doesn’t matter.

http://www.omdbapi.com?s=tomatoes&apikey=67ecd31b

This request returns a status of 200 which means it was successful. The response is a JSON array
returning up to 10 results. The OBDb API returns results in pages of size 10, and there are other
parameters that can be used to retrieve more results.

&

Pretty Ra Previev Visualize v =
1 {
2 "Search": [
4 "Title": "Fried Green Tomatoes”,
5 "Year": "1991",
& "imdbID": "ttelelo2l",

v--:“pen: ”r\C'\iE",
"Poster": "https://m.media-amazon.com/images/M/

MVSBOWQIZWEBMTQt MMEWOSBBY jA3L TEy ZTATNIYSODEYZT I JNDI2XKEYXkFacGdeQXVy NFES

9 3,

e {

11 "Title": "Attack of the Killer Tomatoes!",
12 ear 1578",
13 imdbID": "tteese391”,
14 "Type": "movie"”,

Add the page=2 parameter to return the next 10 results.
http://www.omdbapi.com?s=tomatoes&apikey=67ecd31b&page=2

Set the type=series parameter to only return TV shows in the results.
http://www.omdbapi.com?s=tomatoes&apikey=67ecd31b&type=series

Each movie or show has an ‘imdbID’ to uniquely identify it. We can use the ‘i’ parameter to return
information about a particular show. “Attack of the Killer Tomatoes!” has an imdbID of ‘tt0080391’, so
we can request its details with the following request.

http://www.omdbapi.com?i=tt0080391&apikey=67ecd31b

http://www.omdbapi.com/?i=tt0080391&apikey=67ecd31b

W 00 N Oyt DWW N e

e e el
H w N o

"Title": "Attack of the Killer Tomatoes!",

"Year": “1978",

"Rated": "PG",

"Released": "25 Dec 1978",

"Runtime”: “83 min",

"Genre": "Adventure, Comedy, Horror, Musical, Sci-Fi",

"Director”: "John De Bello",

"Writer": "Costa Dillon, John De Bello,). Stephen Peace”,

"Actors": "David Miller, George Wilson, Sharon Taylor, J. Stephen Peace”,
"Plot": "A group of scientists band together to save the world from mutated killer tomatoes.",
"Language": "English"”,

"Country”: "USA",

"Awards": "1 nomination.",

Exercise 3: Test Existing APl Search Functionality

Introduction

VHS by Mail is expanding its functionality to allow customers to search for movies and TV shows not
currently in their catalog. They have an existing Plex and CM WebClient application, so they have
started to add the capability to access APIs from their Plex system.

This exercise is to test the first version of their APl Search WebClient application.

The Eclipse Environment
Open Eclipse by clicking on the desktop icon.

You will be asked to select a Workspace location. Make sure it is set to C:\Conference 2020
Workshops\API\Workspaces\Plex APl Workshop

=

Select a directory as workspace
Eclipse IDE uses the workspace directory to store its preferences and development artifacts.

Workspace: lal| C:\Conference 2020 Workshops\API\Workspaces\Plex APl Workshop - | [Erowse...

[]Use this as the default and do not ask again

» Recent Workspaces

| Launch || Cancel

Note that the VM you are using has a trial version of WebClient. If you see this message in Eclipse, click
the ‘Use Trial’ button.

@] CM WebClient Licensing X
CM WebClient needs a license to operate. Please select your CM WebClient license file below.
Generator license file (genlicense.lic): | Browse... .
Generator ID: af9924ac0bffef09
i Copy Generator ID

Finish Cancel | | UseTrial |

File Edit Navigste Search Project Run Window Help
N~ RiRiw | BN R SREET IH-0-L-Q-F-6- ™0/ PR SN
e b (ascheems | |8
[£ Project Explorer 3 =0 [E] obclient.properties 53 | =0
Bl e ~ ! I# ~
B P e
v 4 VHSJava 2: CA Plex Java runtime client options file
s | A
v?go:;séjm 5 0MDb. APIURL=http: //www.omdbapi . com
= . 5 5 0MDb. APTIKey=742d6c2b
|=] obclient.properties 7
» & PlexRes 8 Environment=Default
> £ PlexSre 9 Applet .UseFrame=No
> (# custom . 18 UseMouseOverCursor=Yes
> Bk JRE System Library [jdk-80.2 | 11 Messagelog.X=840
> B Referenced Libraries 12 Messagel og.Y=32
> @k WebClient i+ [1.8.6-pre1287! 13 Messagelog.Width=600
> (® WebGenTemplates 14 Messagelog. Height=300
) [= prototype 15 Messagelog. Topmos t=No
&) ObRunjar 16
|| ObRunlavaBeans jar 17 Defaul tFont=sansserif
k& sqlite-jdbe-3.20.0,jar 18 CourierNew=mgnespaced
> & vhsweb 19
3 723 WebClient 20# This is the optmn that enables Multiple Instances of the same function running in the same JVM
& 2 " e ¥
1 # Warnina. Doarformanca mi ioht ho Jownr whon thic antian ie cot to Vor hot that will ha racniead 56
< >
[®] Markers [Prope.. & Servers §2 W8 DataS.. [Snipp.. [*] Prob B Cons. 8= Outline [Task L % Debug EISOLR =9
BEFOdmw~
> Eu Tomcat 8.0 Server at localhost [Stopped]
< >
| Writable | tnsert [1:1:0 fmlme 7 ©FQ

If you’re unfamiliar with Eclipse, the Workspace is a collection of Project folders. The Projects can be
explored in the region on the left of the screen. The main Projects are:

* VHSJava — This project contains the generated Plex Java code, the obclient.properties file and custom
templates for WebClient.

* vhsweb — This is the web project that contains the configuration files and resource files to be
published on the web.

e WebClient — This contains system templates, the template generator, WebClient runtime and Plex
runtime.

Double-clicking on a file within the project will open the file with its appropriate editor tab in the main
region.

The bottom region contains several tools, each with their own tab. One of these is the Server tab which
allows developers to publish the web application.

Publish and Test the Web Application
Open the Server Tab. Right-click on the Tomcat v9.0 Server

(*/ Markers [T] Properties 4 Servers 53 N8 Data Source Explorer
& Tomcat v3.0 Server at localhost [Stopped, Synchronized]

0
7 #Environment . Defaul
8 #Environment . Defaul
S Environment.Default
@ #Environment .Defaul
1Environment.Default
2 #Environment .Defaul
3Environment.Default
4 Environment.Default
5Environment.Default
6 Environment.Default
7Environment.Default
8 Environment.Default
S Environment.Default
¢ Environment.Default
1Environment.Default
2Environment.Default
3Environment.Default
4 Environment.Default
SEnvironment.Default
6 Environment.Default

7Environment.Default
R Fnviranment Nefanlt

farkers [| Properties i Ser

L Tomcat v3.0 Server at localhost-ratoppea;syncnronmzeay

i

21 - -2

T8
e

New

Open
Show In

Copy
Paste

Delete

Rename

Debug

Start
Profile
Stop
Publish

Clean...

Add and Remove...
Meonitoring

Clean Tomcat Work Directory...
Update Password...

Properties

F3
Alt+Shift+W >

Ctrl+C
Ctri+V
Delete

F2

Ctri+Alt+D
Ctrl+Alt+R

Ctrl+ Alt+S
Ctrl+Alt+P

Alt+Enter

[S
3

hf
DN
1

iﬂs

Wait for the web application to publish. When it’s ready, the status of the server should display as

[Started, Synchronized].

We can now run the application in a browser.

Open Chrome.

and enter http://localhost:8080/vhsweb/wc in the address bar.

The web application should launch. Enter some text in the Title field and press Search.

Tile |siien

I

Alien 1979 Movie https://m.media-
Alien® 1992 Movie https://m.media-
Alien: Covenant 2017 Movie https://m.media-
Alien: Resurrection 1997 Movie https: //m.mediz-
Alien vs. Predator 2004 Movie https://m.media-
My Stepmother Is an Alien 1988 Movie https://m.media-
Alien Nation 1988 Movie https://m.media-
Alien Raiders 2008 Movie https://m.media-
Alien Abduction 2014 Movie https://m.media-

Alien Autopsy Movie https://m.media-

This is a regular Plex grid, but instead of reading data from a database it is using a custom BlockFetch
function calling the OMDb API and returning the results in a Plex array. In the next exercise we’ll look
into how this was achieved.

VHS By Mail want to make a couple of changes to the search functionality.
¢ Add an additional Search panel to allow searches by Movie, TV Show or Episode — Exercise Four.

e Change the poster display to something more visually appealing — Exercise Five.

Exercise 4: Add New Search Tab

The Plex Application
Let’s take a look at how the Plex application calls the API.

Open Plex.

i

CA Plex r7.2.1

Open the model VHSByMail.mdl in C:\Conference 2020 Workshops\API\LocalModel

The model contains some basic patterns scoped under the entity named ‘API’ which contain some
functionality for accessing APIs.

Note: These patterns are not complete, or fully tested. Use at your own risk!

Our main entity is ‘OMDb API’ which inherits from APIl.FetchResource. It inherits the view APIFetch
which scopes a BlockFetch function which attempts to mimic the standard BlockFetch functionality,
allowing it to work with Grids etc.

Plex doesn’t have native support for API calls, so this is provided with Java source code objects although
it could easily be expanded to use C# or even C++ source code.

The source code objects the BlockFetch uses are:

* APIRequest — This takes a server URL, a parameter string, and a request method (GET, POST, PUT
etc.) and returns the JSON response in a Plex Object field.

e GetArraylnstance — Each API returns data in a different format, so this source code will need to be
edited to identify the array part of the response to pass to an Array variable.

e MapJSONToFields — This takes the array instance and maps the JSON properties to Plex fields that
will be returned by the BlockFetch

e CheckOBDbResponseStatus — This is a custom source code object written for this API to check the
response is correct and report any error messages.

The APIRequest source code takes the server URL as a parameter, and it would be possible to hard-code
a value for this in the application, but that would make it difficult to switch between a test APl server
and a production server. For this reason, this solution reads the API server as a run-time property from
the obclient.properties file. For similar reasons the API key should be fetched from the
obclient.properties file to allow it to be switched easily.

The function OMDb API.GetAPIConnectionProperties reads those properties and returns them to the
calling function.

Open the obclient.properties file

7

In Eclipse, expand the VHSJava project in the Project Explorer on the left. Next, expand the ‘properties
folder and double-click on the obclient.properties. The file will open up in an editor in the main area.

- e

iy Project Explorer 23 =
= Servers
v = VHSJava
v (W properties
> META-INF
= obchent.properties
(R PlexRes
B PlexSrc
(B custom

Scroll to the top of the file to see the properties for the OBDb API.
=] obclient.properties 53

5 OMDb.APIURL=http: //www.omdbapi . com
& OMDb. APIKey

8 Environment=Default

S Applet.UseFrame=No
10 UseMouseOverCursor=Yes
171 Messagel og . X=840

12 Messagelog.Y=32

13 Messagelog.Width=600
14 Messagel og. Height=300
15 Messagel og. Topmost=No

If you registered for the OBDb API key, you can enter that value in the OMDb.APIKey property.

Press Ctrl + S to save your changes.

View API Parameters
The APIRequest source code object takes a parameter string to pass to the API. This can be created in
Plex with the use of Format Message 'APIParameters' scoped to the BlockFetch function.

In Plex, open the OMDb API.APISearchByMovieTitle.BlockFetch.APIParameters message object. It's
pretty simple, it just takes the Title and APIKey fields and formats them in a way that the APl expects.

[-

= Message: OMDb APL.APISearchByMovieTitleBlock... | — | & |{m3m|
s=&(l:) Gapikey=&(2:) h F'.ararne_t_erx |
a6 1:] Tkle |
L 62) APl Kep
v
< >

Create a New Search Tab
We can use this information to add a new Search Tab to the API Search function. The new Search will
allow us to filter the results to return only Movies or TV Shows.

The API provides a parameter ‘type’ to let us do exactly this, just set the value to ‘movie’ or ‘series’, so
our request will look like:

http://www.omdbapi.com/?s=banana&type=series&apikey=67ecd31b

To achieve this in Plex we need to add a grid to the 2nd tab and create a new view with a BlockFetch to
use with the grid. We can add the Title and Type fields to the panel to let the user enter their searches,
and we need to format the parameters to pass to the API.

We can use inheritance to create the new view as it is very similar to the existing OMDb
AP|.APISearchByMovieTitle view.

Create the New View
Add the triples:

OMDDb APl ENT view VW APISearchByMovieTitleAndType
OMDb API.APISearchByMovieTitleAndType VW isa VW OMDb APIl.APISearchByMovieTitle

The function we will be using already exists, so to use this new view we just need to add a replaces VW
continuation triple:

OMDb API.SearchByType FNC replaces VW APl.FetchResource.APIFetch

...TRP by VW OMDb API.APISearchByMovieTitleAndType

Add the Search Fields
We can now add our search fields to the panel. Add the following triples:

OMDb API.SearchByType.Panel PNL displays FLD Title
...TRP for VAR Selections
OMDb API.SearchByType.Panel PNL displays FLD ShowType
..TRP for VAR Selections
We also need to display the selected record in the DetailP region, so add the following triple:
OMDb API.SearchByType.Panel PNL displays view VW OMDb API.APISearchByMovieTitleAndType

...TRP for VAR DetailP

Clean Up the Panel Design
Spend a minute cleaning up the panel design so that it looks something like this.

Titlle ‘ " Movie Sefier Sgach ExternallD |

Title YearMade ShowTupe | Title |

ImageURL
YearMade [0

ShowType & Movie
" Series

ImageURL |

Hide the Selections<ShowType> label and move the values horizontally, set the width of
Selections<Title> Edit control to 260. Set the width of the Edit controls for DetailP<Title> and
DetailP<ImageURL> to 250. For the grid, set the width of the Title column to 200, and set the width of
the rest of the columns to 100.

Add the New Search Parameter to the APl Request
We are going to need a new BlockFetch for the new tab, so as everything is mostly in place in the
existing BlockFetch we can use inheritance to create it.

OMDb API.APISearchByMovieTitle.BlockFetchByType FNCisa FNC
OMDb API.APISearchByMovieTitle.BlockFetch
OMDb API.APISearchByMovieTitle.BlockFetchByType FNC file name NME OMDbTypeBF
OMDb API.APISearchByMovieTitle.BlockFetchByType FNC impl name NME OMDbTypeBF
Now we can set up the Search tab to use the view and BlockFetch function
OMDb API.SearchByType FNC replaces VW APl.FetchResource.APIFetch
...TRP by VW OMDb API.APISearchByMovieTitle
OMDb API.SearchByType FNC replaces FNC API.FetchResource.APIFetch.BlockFetch
...TRP by FNC
OMDb API.APISearchByMovieTitle.BlockFetchByType

We still need to pass the Show Type to the API, so we can add a new parameter to OMDb
AP|l.APISearchByMovieTitle.BlockFetchByType.APIParameters. Note that this message object is
inherited from the original BlockFetch, so it has inherited the Title and APIKey parameters, but if we add
an explicit MSG Parameter FLD triple it will insert that parameter to position &(1:) so we’ll need to
reorder the other parameters.

Our new parameter string is:

s=8&(2:)&apikey=&(3:)&type=&(1:)

=] Message: OMDb API.APISearchByMovieTitle.BlockFetchByType. APIParameters [B | S
.!5=&t2:)&apikey=& (3:)ecype=&(1l:) ~ | Paameters |
taat %[1:] ShowT vpe
(2] Title
wa (3] APIKey

Now we can retrieve the Show Type search field and use it to populate the OBDb request.
Add the new Selection field to the BlockFetch:
OMDb API.APISearchByMovieTitle.BlockFetchByType FNCinput FLD ShowType

...TRP for VAR/Selections

The APIParameters format message statement is set up to automatically map from the Selections
variable, so there’s nothing to do for that.

We now need to default the ShowType field from on the Search panel to ‘Movie’.

Open OMDb API.SearchByType in the Action Diagram editor and add the following to the end of the Pre
Point End Initialize collection point.

Set Selections<ShowType> = <ShowType.Movie>
Put Selections

The call to the BlockFetch already maps the Selections region, so verify that it is being passed.

DT o I I) =

Function: OMDb APLAP|5earchByMovieTitle.BlockFetchByType

] Tupe To From
| Selections< Title [Selections< Titlex]

i1 Selections<ShowTvpe> [Selections< ShowT ypex]

il Control<Fosition: GrdL<Position»

i Control<StartPozsition: APl<StartPoztion>

‘o Contral<R owsF etched: GrdL<BufteredR ows>

H D uakAPIResponsal SOMNATay > [AP1<&PIR esponse) S0NAmay: |

Now everything is in place to try it out. Drag the OMDb API.SearchByType and OMDb
API.APISearchByMovieTitle.BlockFetchByType functions to the Gen & Build window, and Generate them
(no need to build, we will do that in Eclipse).

250 OMDb AP

& GetAPI ConnectionProperties [aval C:\Conference 2020 Workshops\APINWork spaces\Plex APl Workshop'G en\SreMovies\OMDbProps_ObFnc. java (10/16/2020 12:58 PM)
= 5 calchByTit\c [-Java] E \Cunfcrcn:c 2020 \-\-"orkshous\.-'-‘«.F'I \Wurkspacc \Plex APl Work shophGen\Sici\Maovies\SearchByT itle_ObFnc java (10/16/202012:58 PM|
:s'\Plex AP Work shop\Gen\Sic\Movies\SearchByT ype_ObFnc.java (10/16/2020 12:58 PM)

ILul

,J P‘h_l,lslcal tahle [JDBC]

=3 APIFeich (]

=3 APIS earchByMovieTille ()
I BlockFetch [Javal C:\Conference 2020 Work shops'aPl \Wulkspaccs'\Plcﬁ AP 'workshopsGen'Sic\Movies\OMDbBT ileBF_ObF nc.java (10/16/2020 12:58 PM)
[EdBlockFelchByT ppe [Java) C:\Conference 2020 W orkshopshaP|\w -es'Plex AP ‘Work shop\Gen'SrciMovies\OMObT ypeBF_ObFnc java (10/16/202012:58 PM)
& SingleFetch [Java)

&3 Fetch (JDBC)

& Update

=) ZZAP1SearchByMovieTitle (]

|_T| [+

[+

=

Switch to Eclipse. Select the VHSJava project, right-click and select Refresh from the context menu.
Eclipse will pick up the newly generated functions and the WebClient template builder will build them.

Now restart the Server on the Server tab by right-clicking on Tomcat v9.0 server in the Servers tab and
selecting ‘Start’.

a)

7 #Environment . Defaul New > LS
8 #Environment . Defaul Open 3 Ha
9Environment. Default Shin It Alt+Shifts W >
@ #Environment.Defaul hf
1Environment.Default [& Copy Ctrl+C BN
2 #Environment . Defaul Paste ctrey I
3Environment.Default " o
4Environment.Default % Delete elete
SEnvironment.Default Rename F2
6 Environment.Default K\
7Environment.Default #’: s 2 Em*mt’o _
8 Environment.Default 2 Start Ctrl+Alt+R
9 Environment.[)e;auit &7 Profile
@Environment.Default
1Environment.Default IE’ StOP_ S es
2Environment.Default £ Publish Ctrl+Alt+P
3Environment.Default Clean... 5
4 Environment.Default
5Environment.Default (1 Addand Remove..
6 Environment.Default Menitoring >
7Environment.Default _
R Fnvironment Nafanlt Clean Tomcat Work Directory...

: Update Password...
farkers [C] Properties 4 Ser Properties Alt+Enter im

ie Tomcat v9.0 Server at localhost-totoppe;aynenronzear

Once the status is changed to [Started, Synchronized] we can open Chrome and access the application at
http://localhost:8080/vhsweb/wc

You should now be able to click on the ‘Shows By Type’ tab and be able to filter your results by Movie or
Series.

s v

Title [siien

Ben 10: Alien Force 2008
Alien Nation 1989
Ben 10: Ulimate Alien 2010
Unsealed: Alien Files 2012
Benji, Zax & the Alien Prince 1983
Alien News Desk 2018
Alien Dawn 2013
My Girlriend is an Alien | 2018
Alien Encounters 2012
Alien Highway 2018

Series

] O Movie (@) Series - ExtemallD 1110274293

_ Title My Girlfiend is an Alien

https://m me
https.//m.me
https://m.me
https:/im me
https://m.me
https:/im.me
https:/im me
https://m me
https://m me

https://m.me

YearMade 2013

ShowType Movie
@ Sernes

ImageURL htips//m media-amazon comfimages/M/MV58MzoxZ

It looks good so far, but in the next exercise we will apply a new WebClient template that we can use to

call the API directly from JavaScript.

Exercise 5: Apply Custom WebClient Template

Introduction
In this exercise, we’ll take a look at another way of consuming APIs for WebClient applications. So far
we’ve been using Java source code to consume the APl and pass the returned values into Plex fields.

In this exercise we’ll be using a WebClient control template with JavaScript code to consume the APl and
provide a visual representation of the data.

Despite the similarity in names, JavaScript is not actually related to Java. It was designed to runin a web
browser and interact with the elements of the page. As it was designed for the web, it has inbuilt
support for requesting internet resources and processing the responses.

Review Control Templates

A WebClient control template is used to provide a representation of a Plex control in a browser. By
default, each control type, e.g. a Combo-box or a Grid is represented by a control template that offers
the same functionality as the equivalent desktop control, so the web Grid will look and behave the same
as a C++, Java or C# grid. Additionally, WebClient allows you to use a custom control template to
override the default control template. We can see an example of this on the first tab where the image
of the movie is displayed.

e
Title pulp |
e .

Puilp Fiction

Pulp Fiction 1994 https://m.media- ShowType © Movie
Pulp 1972 Movie https://m.mediz-

Fulp: A Film About Life, Death ar 2014 Movie https://m mediz-

Marvel 75 Years: From Fulp to P« 2014 Movie https://m.mediz-

Pulp Fiction: The Facts 2002 Movie https: /m media-

Pulp 2013 Movie https://m.media-

Pulp Sport 2003 Series https://m.media-

Pulp Fiction" on a Dime: A 10th 2 2004 Movie https://m.media-

Pulp Comics: Louis C.K's Filthy { 1939 Movie N/A

Pulp Dichien 2003 Movie N/A

We can look at the panel design to see how this is implemented. Open up OMDb
API|.SearchByTitle.Panel in the panel editor.

The DetailP.ImageURL.Edit control has a control name of

Showlmage:MainArea:template=Weblmage:default

The Showlmage part is a unique control name for the control, MainArea tells WebClient where to insert
the control on the page, and template=Weblmage directs WebClient to apply an alternate control
template. The last part default tells WebClient to use size and position from the panel design.

= [Parel
Search 5‘}5 Thte | DetailP.ImageURL Edit
VeaMade [0 2] Defaut
ShowType © Movie ijilﬂﬂ':;howlmage:Main.ﬁ.rea:template=WebImage:default
[Senes -
L] - D | Background Color | 5 MWindows Background)
i D | Border Inderted
E D | Case Mixed
T | Clip Control No
- | Control Id NoValue
. L | Control Name Showlmage:M ainfrea: template=\»/ebl mage: default
i C | Control Type Edit
; P | Disabled No
T | Drag Source No
L]
' T | Drop Target No
T | Exist Yes
: L | Fix Boltom Yes
; P | FisLeft No
; P | Fix Right Yes
P | FixTep Yes
E + | Fly Over Hint NoValue
i P | Font Regular 8 'MS Sars Serf
- menes Wreereressensssstssanas b D | Highlight OnFocu | No
IME Control NoValue

LI T e PR ¥ P L 1P TP AP

In Eclipse, the Weblmage.ctrl file is in the VHSJava/Custom folder. Essentially this template creates an
 HTML element with the src attribute set to the value of the field.

We’'ll be using another custom template RotatorView.ctrl on our new Search tab. This template uses
HTML and CSS to provide a more advanced control which displays the movie poster, then rotates to
show the description when the mouse hovers over the control. To retrieve the movie description, the
control makes a request to the OMDDb API, passing in the ID of the movie or show. We have the ID of the
show stored in the DetailP<ExternallD> field, so we will use that field to assign the template to. In
addition, the template needs the APIKey, so we can direct WebClient to reference the value of the
DetailP<APIKey> field.

Before we do that, let’s take a look at the template.

Review RotatorView.ctrl Template
In Eclipse, double-click on the VHSJava\Templates\RotatorView.ctrl template to open it in an editor.

We won’t go into all the details, but essentially it provides a JavaScript function getMovielnfo() to call an
API, then update HTML elements with the response details.

The API call is made with just a few lines. First we set the URL using S{variable} syntax to insert our
parameters into the string.

const url = *http://www.omdbapi.com/?i=5{OMDbID}&apikey=${movieAPIKey}';

We then make the actual APl request with the await fetch() method which performs a synchronous GET
request. Usually requests are asynchronous, but for simplicity the await waits for the response before
moving on.

const response = await fetch(url);

We then assign the response to a JavaScript variable movieJSON. From there we can populate the HTML
elements with information about the movie or show.

const movieJSON = await response.json();

The SetValue action calls the getMovielnfo() every time the associated Plex control value is changed.
The current value of the Plex field populates the /(!This) value.

/(!Action:SetValue)
getMovielnfo(/(!This));
/(!Action)
The last part to look at is how the APIKey is received.
var movieAPIKey = /(!MovieAPIKey);
This will populate the control with the value of another control with the control name “MovieAPIKey”.

Let’s make the changes in Plex to implement this control template.

Apply the control template to our Search Tab
Open the panel OMDb APl.SearchByType.Panel in the panel editor.

We don’t need the DetailP<ImageURL> field, so we can set the Visible property to No.

The DetailP<ExternallD> is the one we’ll be using for the template, so move the field below the others,
then set the label for that field to Visible = No, and resize the ExternallD.Edit control to 312,292 to fill
the rest of the region.

" Movie © Serez Search
ShowType ImageRL e |
YeaMade |
ShowType & Movie
i Seres
R e e e o | i |
. ;p
> E
| e e |

To associate the control with the template we can set the Control property of the ExternallD.Edit to

rotatorView:MainArea:template=RotatorView:default

DetailP.ExternallD.Edit

Ef“ Default

i]i] i] |h|:|tat|:|rk-fie wMaintrea template=R ot atoriew: default

D | Background Color | 5 PWindows Backgroaund)
D | Border Indented
D | Caze Mixzed
T | Clip Control Mo
Control 1d Mo WValue
L | Control N ame rotator/iew: M aindrea: template=R otatoriew: def ault
C | Control Type Edit
F | Dizabled Mo
T | Drag Source Mo
T Mean T anet M

Finally for the panel we need to add the APIKey field so we can pass the value into the template.

Drag the APIKey field from the Object Browser to the DetailP region on the panel. We can hide the field
as we don’t need to see it by setting the Visible property to No, then select the APIKey.Edit control and

set the Control name to MovieAPIKey

DetailP.APIKey.Edit

Ef“ Drefault
A x| v|MovieaPiKey

D' | Background Color | 5 [(wWindows Background)
D | Border |ndented
D | Caze Mixed
T | Chip Control Mo
Cantrol 1d No Value
L | Control M ame MowviedPlKey
C | Contral Type E dit
P | Disabled No
T | S P —— Rl

This will allow the value of this field to be retrieved in other templates. In the RotatorView.ctrl it is

referenced on the line
var movieAPIKey = /(!MovieAPIKey);
Now all we need to do is populate the DetailP<APIKey> in the action diagram.

Open the action diagram for function OMDb APl.SearchByType and add the following code in the Post

Point End Initialize collection point.

Set the A ey

Call OMDb APl GetdFIComnectionFroperties
Set DetailP<AFIKey: = Output< AP Kep:-

Fut Detail?

™1 EditPoint Endinbialize
& Post Paint

Save your model and regenerate the OMDb APl.SearchByType function.

Switch to Eclipse. Select the VHSJava project, right-click and select Refresh from the context menu.
Eclipse will pick up the newly generated functions and the WebClient template builder will build them.

Now restart the Server on the Server tab by right-clicking on Tomcat v9.0 server in the Servers tab and
selecting ‘Start’.

Visit your web application at http://localhost:8080/vhsweb/wc

Title '.,-Juen] @ Movie Seres -

1979 httpsimme ~ YearMade 1573

Alien® 1932 Movie https://mme ShowType @ Movie

Alien: Covenant 2017 Movie https://m.me

Alien: Resurrection 1997 Movie https://mme

Alien vs. Predator 2004 Movie https://mme

My Stepmother Is an Alien 1988 Movie https://mme

Blien Nation 19838 Movie hitps://mme

Alien Raiders 2008 Movie htps:/imme After :space merchant vessel receives

: ; an unknown transmission as
Alien Abduction 2014 Movie https://m.me - < 83 a distress
call, one of the crew is attacked by a

Alien Autopsy 2006 Meovie https://mme

mysterious life form and they soon
realize that its life cycle has merely
begun.

Search for a movies or TV show, then move your mouse over the poster image to reveal more details
about the show.

Now you’ve seen a couple of ways to consume APIs from your Plex application you can start thinking of
ways to expand your existing applications.

http://localhost:8080/vhsweb/wc

Exercise 6: Getting Stared with the Quarkus APl Workspace

Introduction

We will be using the Quarkus Java Library to easily create and deploy our APIs. Feel free to check out
https://quarkus.io/ to get more information on all Quarkus has to offer. There is a Quarkus plugin for
Eclipse, which will allow us to develop and launch our APIs from our Eclipse workspace.

Workspace

Open Eclipse and open the “C:\Conference 2020 Workshops\API\APIWorkspace” workspace. Here we
have 1 project (RestAPls). This is already setup to reference the proper Quarkus libraries. If you expand
“src/main/java” folder at the top, you will see several packages.

“com.complete” contains the completed version of the workshop. Feel free to use this as a reference if
you get stuck, but it would be best to not just copy/paste our code from these files.

“com.conference” contains stub versions of all the Java Classes that we will be working with. All your
code changes will be done in the files in this package.

&5 Project Explorer &2

v 1= RestAPls
v ® sre/main/java
com.complete
w i com.conference

4] CheckoutParms,java
] MovieAPljava
1] MovieCheckout.java
4] Movielnfo.java

com.plex

https://quarkus.io/

Exercise 7: Creating our First API

Introduction

APIs through Quarkus need a Java Object to know what information to return from the APIl. Our API will
return the movie’s ID, Name, and Availability. So, we will create a class to house these return
parameters. Then, we will write some Java code to call our Plex function (Movies.By
Name.BlockFetchByName) and set its output to be returned by our API.

Creating the Class

Open the Movielnfo.java file in “com.conference”. Here we will set the necessary attributes that we
want to return, as well as the Java Constructors needed for the class (this is required by Quarkus). Add
the following code to the Movielnfo Class:

public int movield;
public String movieName;
public boolean available;

public Movielnfo() {
}

public Movielnfo(int movield, String movieName, boolean available) {
this.movield = movield;
this.movieName = movieName;
this.available = available;

}

We are setting up to store the Movie Id (integer), Movie Name (string), and Availability (boolean) in the
Movielnfo object.

NOTE: You may notice a method already in the Movielnfo class called getPropertyPath. Please leave
this here. This just makes our code cleaner when we call the Plex function.

Calling the Plex Function
When calling a Plex function from outside of Plex, the Plex runtime provides a method we can use:
ObApplication.obCallFunction

This takes in the ObUserApp, the Environment, Input, and Function Name. Then, outputs a String array
of the output fields.

The main issue with this is building the input string array. It is difficult to tell what order everything
should be in.

To get around this we will use some other Plex runtime methods to build this for us.

We have also created our own Wrapper method to make using this easier: CallHandler.callPlexFunction

Creating our Method
Our method will be returning a list of the Movielnfo Objects. Start by putting this code in the Movielnfo
class:

public static List<Movielnfo> blockFetchMovies(){
List<Movielnfo> dataArray = new ArrayList<Movielnfo>();

return dataArray;

}

We have created our method, initialized our return object and said it will return a List of Movielnfo
Objects.

NOTE: These 2 lines will always be the first and last line of our method.

Setting up the Plex Objects

We need to setup our ObUserApp object. We will initialize it and point it to our Property File location.
We will also setup a try/catch block to handle our calls. This will help us catch any errors and report it in
the console. Please add the following code to our method:

//Call Movies.By Name.BlockFetchByName
ObUserApp app = new ObUserApp(Movielnfo.getPropertyPath());
String fncName = "Movies.AA16F";

try {

} catch (Exception e) {
e.printStackTrace();

} finally {
app.clearReferences();

}

NOTE: All of our remaining code with go in the “try” block of code.

Calling the Plex Function
We now need to make a new instance of the function object we want to call. Then, map the input
parameters, similar to what you would see in Plex Generated Java. And finally, call the function.

Paste the following code into the “try” block:

AA16F _ObFnc fnc = new AA16F_ObFnc(app.m_callMgr);

ObVariableGroupX obln = (ObVariableGroupX) fnc.getInVariable();

obln.getVariable("AA16F_Control").getAsObCharFIdField("S5trh2n").assign(new ObCharFld("Y"));

obln.getVariable("AA16F_Control").getAsObLongFldField("S5trh30").assign(new ObLongFld(0));

obln.getVariable("AA16F_Position").getAsObCharFldField("MovieName").assign(new
ObCharFId(""));

obln.getVariable("AA16F Selections").getAsObCharFIdField("MovieName").assign(new
ObCharFId(""));

String[] outParms = CallHandler.callPlexFunction(app, fnc, obln, fncName);

Here we create a new instance of the ObFnc for AA16F (which is our BlockFetch function).
Create a new instance of the Input Variable and map the input variable objects.

Then, call the Plex Function using out “callPlexFunction” wrapper method. Without this method, we
would be manually building the Input String Array (which is a major pain to get right).

Parsing the Output
Now that our call is complete, we have our Output in a String Array. This is similar to the Input String
Array we avoided manually creating, but it is much easier to deal with.

We know the Rows Fetched count is the 4t object in the Array.
NOTE: Java arrays start on index 0

We know our FetchedData starts on 6% object of the Array. And our FetchedData has 4 fields in it.

Using this information, we can create a loop to parse the Output array and create the List of Movielnfo
Objects for us to output.

Put the following code after the callPlexFunction method call:

int rowsFetched = Integer.parselnt(outParms|[3]);
int rowFieldCount = 4;
int startingPoint = 5;
for (inti=0; i< rowsFetched; i++) {
Movielnfo movie = new Movielnfo();
movie.movield = Integer.parselnt(outParms[startingPoint]);
movie.movieName = outParms[startingPoint + 1];
String availYN = outParms[startingPoint + 3];
if(availYN.equals("A")) {
movie.available = true;
}else {
movie.available = false;
}
dataArray.add(movie);
startingPoint = startingPoint + rowFieldCount;

Here you can see our simple loop where we create a new instance of our Movielnfo Object. We set the
ID and Name. Then, some simple code to set the Available boolean value.

With this, we have our method to call our Plex BlockFetch function and return the List of our Movielnfo
Objects.

Just for reference, your blockFetchMovies method should look like this:

public static List<Movielnfo> blockFetchMovies(){
List<Movielnfo> dataArray = new ArrayList<Movielnfo>();

//Call Movies.By Name.BlockFetchByName
ObUserApp app = new ObUserApp(Movielnfo.getPropertyPath());
String fncName = "Movies.AA16F";
try {
AA16F_ObFnc fnc = new AA16F_ObFnc(app.m_callMgr);
ObVariableGroupX obln = (ObVariableGroupX) fnc.getInVariable();
obln.getVariable("AA16F Control").getAsObCharFIdField("S5trh2n").assign(new ObCharFld("Y"));
obln.getVariable("AA16F_Control").getAsObLongFldField("S5trh30").assign(new ObLongFId(0));
obln.getVariable("AA16F Position").getAsObCharFIdField("MovieName").assign(new
ObCharFld(""));
obln.getVariable("AA16F_Selections").getAsObCharFIdField("MovieName").assign(new
ObCharFld(""));
String[] outParms = CallHandler.callPlexFunction(app, fnc, obln, fncName);
int rowsFetched = Integer.parselnt(outParms|[3]);
int rowFieldCount = 4;
int startingPoint = 5;
for (inti = 0; i < rowsFetched; i++) {
Movielnfo movie = new Movielnfo();
movie.movield = Integer.parselnt(outParms[startingPoint]);
movie.movieName = outParms[startingPoint + 1];
String availYN = outParms[startingPoint + 3];
if(availYN.equals("A")) {
movie.available = true;
}else {
movie.available = false;
}
dataArray.add(movie);
startingPoint = startingPoint + rowFieldCount;
}
} catch (Exception e) {
e.printStackTrace();
}Hinally {
app.clearReferences();

}

return dataArray;

Creating our API
Now that we have our class defined for what we will return, and our method to call our Plex function,
we now need to create the APl to expose this code.

Open the MovieAPl.java file in “com.conference”. You will see the following code already there:

@Path("/movies")
@Produces(MediaType.APPLICATION_JSON)

@Consumes(MediaType.APPLICATION_JSON)

This is the initialization of our URL path the API will use (which will be localhost:8080/movies) and the
definition of the format of any body elements we will be receiving and returning (JSON).

In the MovieAPI class, add the following code:

@GET
public List<Movielnfo> callMovieBlockFetch() {
return Movielnfo.blockFetchMovies();

}

The “@GET” sets our AP| to use the GET HTML method.

The “List<Movielnfo>" in the definition tells the APl that we will be returning a list of the Movielnfo
object. This will all be interpreted by Quarkus to return a JSON array.

The final thing we do in our method is to call our blockFetchMovies method to get all our movies from
the Plex function.

Deploying the API

To start the Quarkus API Service from Eclipse, click the dropdown arrow next to the Green Play button at
the top toolbar. Then select the “RestAPIs” application. The Quarkus service will start. All of the APIs
will be running on localhost:8080.

ﬁv (évE‘Ql | -F | F_Fi@vt:; v%vv . "ﬁv
i Project Explorer &2 S Y|e § =0 | Rest_APls va
~ 12 RestAPls Run As > |
~ i src/main/java Run Configurations...
& com.complete - Organize Favorites... []

L

~ i com.conference 16 @Path("/movies")
40 Ly
4] CheckoutParms.java 17 APndice (MAA ATvma ADDI 1

To Stop the Quarkus service in Eclipse, click the Red Stop Button in the main toolbar.

File Edit 5ource Refactor Mavigate Search Project Plex BEun Window Help

D& @ievigiv EEN IR R

5 Project Explorer 2 % T|® § = 8 [MovieAPljava s

v 5 RestAPls 1 package com.confe
we TR e frnnin finaen ?

As we continue with the workshop, we will need to restart the Quarkus service. To do this, just stop the
service and start it again using the same steps in this exercise.

Testing the API

Using PostMan, we can test our API. Just launch the postman application (there should be a shortcut on
the desktop). Enter “localhost:8080/movies” into the URL and click Send. You should see a JSON array

of our movies in the return body.

GET localhost:3080/movies L] T ooo

Untitled Request

GET - localhost:28080movies

Params Authorization
Query Params

KEY

Body Cookies Headers (2) TestResults

Pretty Raw Preview Visualize JSON

1 I

2 {

3 "ayailable™: false,

4 "movield”: 9,

5 “movieName™: "Alien"

6 Is

7

3 “available™: true,

g "movield": 4,

1@ “movieName™: "Attack of the Killer Tomatoes"
11 I

12

13 “available™: true,

14 "movieId”: 1@,

15 "movielame™: "Bestlejuice”

s
5

b

N
il

Headers (6) Body

Pre-request Script

VALUE

Tests Settings

&) Status: 200 0K Time: 1755 ms Size: 683 B

General v

DESCRIPTION *** Bulk Edit

Save Response

mQ

Exercise 8: Viewing our APl in Action

Introduction

An app has been developed using React)S. This app will be consuming our APIs. This allows us to see
our Plex code being used in a completely different light. To run the application, we will only need to
open VSCode and start the service.

Starting VSCode

Open VSCode (a shortcut should be on the desktop). The workspace will open to the proper folder. In
the Left area of the screen, there is a section called “NPM Scripts”. This is an easy way to launch NodelS
based applications.

NOTE: Before you start the Server, if you created your own OMBD API Key, please enter it in the .env
file. It should already be open, but if you need to search for it, you can use CTRL+P to search for the file.
Ny

conrerg

REACT_APP_API_PROTOCOL=http:
REACT_APP_API_HOSTNAME=localhost
REACT_APP_API_PORT-8020

REACT_APP_MOVIE_APT_KEY=¢ ~ "

File Edit Selection View Go Run Terminal Help React - Visual Studio Code

@ RER

> OPEN EDITORS

~ public
* favicon.ico

.gitignore

« NPM SCRIPTS

»~ {} confer
art - o

Hover over the “start” statement and you should see a play icon. Click that and it will start the React
app.

~ MPM SCRIPTS

{} conference3rdparty

? start - conference3rdp

build - conference3rdparty
? test - ference3rdparty

eject - conference3rdparty

A browser window should be automatically opened to localhost:3000 and you will see our app running.

Exercise 9: Adding a Parameter to your API

Introduction

In our React application, we would like to be able to search for movies based on the title. In our
BlockFetch function, we already have the ability to do this. So, we just need to add the ability to include
a search parameter in our APl and pass it along to our BlockFetch call.

Modifying our BlockFetch Call
In our Movielnfo.java file, find the blockFetchMovies method we created. In the definition of the
method, we should add “String movieName” to the parameters. The line should look like this:

public static List<Movielnfo> blockFetchMovies(String movieName){

We can now reference this parameter in our code. In the line where we set the input parameter for
“Selections<MovieName>", instead of passing in “”, we will pass in our movieName parameter. The line

should look like this:

obln.getVariable("AA16F_Selections").getAsObCharFIdField("MovieName").assign(new
ObCharFld(movieName));

Modifying our API

Our code is ready to accept the parameter. We now need to change our API code to handle this. In the
MovieAPl.java file, we will make several changes. First, in the definition of the callMovieBlockFetch
method, we will add a parameter. The code will look like this:

public List<Movielnfo> callMovieBlockFetch(@QueryParam("movie") String movie) {

Here we are telling Quarkus that we accept a parameter called “movie” in our request and to map the
value into to a Java string called movie.

We just need to pass this into our call to the blockFetchMovies method. But, we should also add some
code to handle if no parameter is passed in. Change the method to have the following code:

public List<Movielnfo> callMovieBlockFetch(@QueryParam("movie") String movie) {
String movieName ="";
if(movie != null) {
movieName = movie;

}

return Movielnfo.blockFetchMovies(movieName);

}

Here we just make sure to handle the possibility of a NULL value and call our method.

Testing
Restart the Quarkus service and refresh our React app. You should now be able to use the Search Bar in

the top right of the application.

MARTIN.
“The JERK

RAGS 7O RIHIE TO RAGH STORT.

CATUN JACKIE
ADAMS v« MASON . .nes

= STEVE MARTIN CARL OTTUES, MIGUEL EIAS "< STEVE BARTN & CARL GOTTUEB
< WLLAM £ WCEEN 3t MDY PIER ~ (AR RENER o e o s =

Exercise 10: Using the Request Body with your API

Introduction

We need to expose the movie checkout process through an API. Since, this is changing data, this will
need to be a PUT API call. For the parameters for the PUT, we will be using the body of the request. In
Quarkus, the body parameters are represented by a Java Class. So, we will first create a new class to
house our request body. Then, us it to call our Plex function (Movie Copies.CheckoutWrapper).

Create the Class

In the “com.conference” package, find the empty class called “CheckoutParm”. This class will have 2
integer attributes: movield and customerld. We also need to create the proper constructors for our
class. When you are finished, your class will contain the following code:

public int movield;
public int customerld;

public CheckoutParms(){
}

public CheckoutParms(int movield, int customerld){
this.movield = movield;
this.customerld = customerld;

}

API Setup
In our MovieAPl.java file, we are going to add a new item after the callMovieBlockFetch method. Please
copy the following code:

@POST
@Path("/checkout")
public MovieCheckout callCheckout(CheckoutParms parms) {
return MovieCheckout.checkoutMovie(parms.movield, parms.customerld);

}

Please take note of the @POST. This tells Quarkus that our APl will use the Post Method. Also notice
the addition of the @Path. This appends “/checkout” to our existing path. So, the URL to access the
AP| will be “localhost:8080/movies/checkout”.

Final note: we have not created the checkoutMovie method yet, so you will have a Java error, please
ignore that for now.

Movie Checkout
We will now create the code to call our Plex function to process the movie checkout. Open the empty
“MovieCheckout” class in “com.conference”.

First, we need to setup the attributes that Quarkus will use for the return body of our API. Please put
the following code in the MovieCheckout class:

public String returnCode;
public String returnMessage;

public MovieCheckout(){
}

public MovieCheckout(String returnCode, String returnMessage){
this.returnCode = returnCode;
this.returnMessage = returnMessage;

}

This will have Quarkus return a body containing 2 simple strings: a Return Code and a Return Message.
Now, we need to write our checkoutMovie method to run our Plex code.
Paste the following code into our MovieCheckout class:

public static MovieCheckout checkoutMovie(int movield, int customerld) {
MovieCheckout output = new MovieCheckout();

//Call Movie Copies.CheckoutWrapper
ObUserApp app = new ObUserApp(Movielnfo.getPropertyPath());
String fncName = "MovieCopies.CheckOutWrapper";
try {
CheckOutWrapper_ObFnc fnc = new CheckOutWrapper_ObFnc(app.m_callMgr);
ObVariableGroupX obln = (ObVariableGroupX) fnc.getInVariable();
obln.getVariable("CheckOutWrapper_Input").getAsObLongFldField("MovielD").assign(new
ObLongFld(movield));
obln.getVariable("CheckOutWrapper_Input").getAsObLongFldField("CustID").assign(new
ObLongFld(customerld));
String[] outParms = CallHandler.callPlexFunction(app, fnc, obln, fncName);
output.returnCode = outParms[0];
output.returnMessage = outParms[3];
} catch (Exception e) {
e.printStackTrace();
}Hinally {
app.clearReferences();

}

return output;

Similar to what we did before with our Plex call, we first initialize our output for the method. Then
setup our Plex object and map the input parameters. Call our Plex function, and finally parse the
output.

Viewing Our Work

Restart the Quarkus Service. The React app that we are running is already setup to use this APIl. Feel
free to click the Checkout button for a movie. The React App does not currently show the number of
copies remaining, but if you checkout a movie enough, the stock will eventually be depleted and that
movie will show as Checked Out.

	Exercise 1: [Optional] Register for API Key
	Introduction
	Create API Key

	Exercise 2: Use Postman to explore the Open Movie Database API
	Introduction
	Using Postman

	Exercise 3: Test Existing API Search Functionality
	Introduction
	The Eclipse Environment
	Publish and Test the Web Application

	Exercise 4: Add New Search Tab
	The Plex Application
	View API Parameters
	Create a New Search Tab
	Create the New View
	Add the Search Fields
	Clean Up the Panel Design
	Add the New Search Parameter to the API Request

	Exercise 5: Apply Custom WebClient Template
	Introduction
	Review Control Templates
	Review RotatorView.ctrl Template
	Apply the control template to our Search Tab

	Exercise 6: Getting Stared with the Quarkus API Workspace
	Introduction
	Workspace

	Exercise 7: Creating our First API
	Introduction
	Creating the Class
	Calling the Plex Function
	Creating our Method
	Setting up the Plex Objects
	Calling the Plex Function
	Parsing the Output

	Creating our API
	Deploying the API
	Testing the API

	Exercise 8: Viewing our API in Action
	Introduction
	Starting VSCode

	Exercise 9: Adding a Parameter to your API
	Introduction
	Modifying our BlockFetch Call
	Modifying our API
	Testing

	Exercise 10: Using the Request Body with your API
	Introduction
	Create the Class
	API Setup
	Movie Checkout
	Viewing Our Work

